Analisis Performa Convolutional Neural Networks pada Deteksi Penyakit Malaria Berbasis Citra Mikroskopis

  • Hanifatus Sa'diyah Widihasaniputri Universitas Muhammadiyah Purworejo
  • Dewi Chirzah Universitas Muhammadiyah Purworejo
  • Widya Kurniawan Universitas Darussalam Gontor
  • Akmal Maulana Universitas Muhammadiyah Purworejo
Keywords: Deteksi Malaria, Convolutional Neural Network, Deep learning;

Abstract

Deteksi otomatis malaria melalui analisis citra mikroskopis sel darah memegang peranan penting dalam diagnosis tepat waktu. Penelitian ini berfokus pada implementasi dan evaluasi model Convolutional Neural Network (CNN) untuk mengklasifikasikan citra sel darah ke dalam kategori 'Tidak Terinfeksi' dan 'Parasit'. Arsitektur CNN, yang terdiri dari lapisan konvolusi, pooling, dan dense, dilatih selama 13 epoch menggunakan optimizer Adam dan fungsi loss Binary Crossentropy. Sebelum pelatihan, citra diubah ukurannya menjadi 128x128 piksel, dikonversi menjadi array NumPy, dan nilai piksel dinormalisasi ke rentang 0-1. Model terlatih mencapai akurasi pelatihan akhir sebesar 91.79% dengan loss 0.3356. Saat dievaluasi pada dataset pengujian yang belum pernah dilihat, model menunjukkan akurasi yang sebanding, yaitu 91.79%, mengindikasikan efektivitasnya dalam mengidentifikasi parasit malaria dalam citra sel darah. Penelitian ini menyoroti potensi signifikan CNN untuk mengembangkan alat diagnostik malaria otomatis dan akurat.

References

B. T. Malino, F. L. F. G. Langi, and B. T. Ratag, “Analisis Distribusi Kasus dan Kematian Akibat Malaria di Indonesia,” J. Kesehat. Tambusai, vol. 4, no. 3, pp. 3907–3915, 2023.

A. S. Abdul Nasir, M. Y. Mashor, and Z. Mohamed, “Segmentation based approach for detection of malaria parasites using moving k-means clustering,” 2012 IEEE-EMBS Conf. Biomed. Eng. Sci. IECBES 2012, no. December, pp. 653–658, 2012, doi: 10.1109/IECBES.2012.6498073.

W. A. Saputra, H. A. Nugroho, and A. E. Permanasari, “Toward development of automated plasmodium detection for Malaria diagnosis in thin blood smear image: An overview,” 2016 Int. Conf. Inf. Technol. Syst. Innov. ICITSI 2016 - Proc., 2017, doi: 10.1109/ICITSI.2016.7858228.

J. Somasekar and B. Eswara Reddy, “Segmentation of erythrocytes infected with malaria parasites for the diagnosis using microscopy imaging,” Comput. Electr. Eng., vol. 45, pp. 336–351, 2015, doi: 10.1016/j.compeleceng.2015.04.009.

W. Rawat and Z. Wang, “Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review,” Neural Comput., vol. 2733, no. March, pp. 2352–2449, 2018, doi: 10.1162/NECO.

V. V. Makkapati and R. M. Rao, “Ontology-based malaria parasite stage and species identification from peripheral blood smear images,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 6138–6141, 2011, doi: 10.1109/IEMBS.2011.6091516.

Vijayalakshmi A and Rajesh Kanna B, “Deep learning approach to detect malaria from microscopic images,” Multimed. Tools Appl., vol. 79, no. 21–22, pp. 15297–15317, 2020, doi: 10.1007/s11042-019-7162-y.

N. K. C. PRATIWI, N. IBRAHIM, Y. N. FU’ADAH, and S. RIZAL, “Deteksi Parasit Plasmodium pada Citra Mikroskopis Hapusan Darah dengan Metode Deep Learning,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 9, no. 2, p. 306, 2021, doi: 10.26760/elkomika.v9i2.306.

A. Sai Bharadwaj Reddy and D. Sujitha Juliet, “Transfer learning with RESNET-50 for malaria cell-image classification,” Proc. 2019 IEEE Int. Conf. Commun. Signal Process. ICCSP 2019, no. August, pp. 945–949, 2019, doi: 10.1109/ICCSP.2019.8697909.

K. M. F. Fuhad, J. F. Tuba, M. R. A. Sarker, S. Momen, N. Mohammed, and T. Rahman, “Deep Learning Based Automatic Malaria Parasite Detection from Blood Smear and Its Smartphone Based Application,” Diagnostics, vol. 10, no. 329, 2020.

Y. Yohannes, S. Devella, and K. Arianto, “Deteksi Penyakit Malaria Menggunakan Convolutional Neural Network Berbasis Saliency,” JUITA J. Inform., vol. 8, no. 1, p. 37, 2020, doi: 10.30595/juita.v8i1.6671.

G. Shekar, S. Revathy, and E. K. Goud, “Malaria Detection using Deep Learning,” Proc. 4th Int. Conf. Trends Electron. Informatics, ICOEI 2020, pp. 746–750, 2020, doi: 10.1109/ICOEI48184.2020.9143023.

A. Koirala et al., “Deep Learning for Real-Time Malaria Parasite Detection and Counting Using YOLO-mp,” IEEE Access, vol. 10, no. August, pp. 102157–102172, 2022, doi: 10.1109/ACCESS.2022.3208270.

R. Rosnelly, B. S. Riza, and S. Suparni, “Comparative Analysis of Support Vector Machine and Convolutional Neural Network for Malaria Parasite Classification and Feature Extraction,” J. Wirel. Mob. Networks, Ubiquitous Comput. Dependable Appl., vol. 14, no. 3, pp. 194–217, 2023, doi: 10.58346/JOWUA.2023.I3.015.

M. F. Ahamed et al., “Improving Malaria diagnosis through interpretable customized CNNs architectures,” Sci. Rep., vol. 15, no. 1, pp. 1–35, 2025, doi: 10.1038/s41598-025-90851-1.

S. Rajaraman et al., “Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images,” PeerJ, vol. 2018, no. 4, 2018, doi: 10.7717/peerj.4568.

S. B. Boly and M. Akbar, “Jurnal Restikom : Riset Teknik Informatika dan Komputer Segmentasi Citra Sel Darah Menggunakan Convolutional Neural Network,” J. Restikom Ris. Tek. Inform. dan Komput., vol. 6, no. 2, pp. 390–398, 2024, [Online]. Available: https://www.kaggle.com/jeetblahiri.

J. G. Purnomo, S. Birowo, and M. A. Maulana, “Identifikasi Malaria Pada Citra Darah Dengan Convolutional Neural Network,” vol. 7, no. 2, pp. 0–6, 2024, doi: 10.32877/bt.v7i2.1828.

Published
2025-05-29
How to Cite
[1]
H. S. Widihasaniputri, D. Chirzah, W. Kurniawan, and A. Maulana, “Analisis Performa Convolutional Neural Networks pada Deteksi Penyakit Malaria Berbasis Citra Mikroskopis”, INTEK, vol. 8, no. 1, pp. 111-117, May 2025.
Section
Articles